Post-operative rehabilitation following multi-ligament knee reconstruction

Twin Cities Orthopedics Virtual Grand Rounds Jill Monson, PT, OCS

> Twin Cities Orthopedics (TCO) Training HAUS Eagan, MN | Edina, MN

- Karie Nash
- TCO team members contributing to virtual grand rounds
- Dr. LaPrade and our multi-specialty complex knee team
- Our patients

AASPT 2021

Inaugural Annual Meeting & Scientific Conference

Updates on Managing

Multi-ligament Knee Injuries: anatomic reconstruction, post-operative rehabili and outcomes in the modern age of MU

Overview

- Epidemiology of multi-ligament knee injury (MLKI)
- Scientific foundations for post-operative precautions
 Biology, biomechanics, confounders
- Early post-operative rehabilitations priorities
 - Recovery \rightarrow Transition phase emphasis
 - Understanding how to make progressions

Language/Abbreviations

Cruciates:

- ACL: anterior cruciate ligament
- PCL: Posterior cruciate ligament

Medial/Posteromedial Knee:

- MCL: medial collateral ligament
 - dMCL: deep MCL
 - sMCL: superficial MCL
- PMC: posteromedial corner
- POL: posterior oblique ligament

Lateral/Posterolateral Knee:

- ALL: anterolateral ligament
- BF: Biceps femoris
- ITB: iliotibial band
- FCL: fibular collateral ligament
- PLC: Posterolateral corner
- PFL: Popliteofibular ligament
- PT: Popliteus tendon

Other:

- CPN: common peroneal nerve
- MLKI: multi-ligament knee injury
- PF: Patellofemoral

MLKI EPIDEMIOLOGY

X-Table

TRAUMA

Multi-Ligament Knee Injury (MLKI)

- MLKI = Tear of ≥2 of the 4 major knee ligaments (ACL, PCL, MCL/PMC, FCL/PLC)
 - Incidence: <0.02% of all orthopaedic injuries
 - Rihn JA. J Am Acad Orthop Surg. 2004; Kaitlin M. Harv Orthop J. 2013
- Knee Dislocation = rupture of <u>both cruciates</u> with or without additional grade III medial or lateral side injury
 - Incidence: 0.001% to 0.013% per year
 - Likely higher d/t spontaneous reduction
 - Hoover N. Surg Clin North Am. 1961; Meyers M. J Bone Joint Surg Am. 1971; Shields L. J Trauma. 1969

Status Post:

- 1) Revision PCLr,
- 2) Revision FCLr/PTFJr with hamstring autograft
- 3) Revision MM root repair
- 4) Biceps femoris repair
- 5) Peroneal Nerve Neurolysis

Jill <u>Slide</u>

Demographic Shift = Expectation Shift?

- Males>Females
- Younger (Mean age 37 ± 15 years)
 - Rate of knee dislocation inversely related to patient age

I'M JUST G • More sporting injuries - MLKI rates with skiing (29.4%) and ball sports (6.9%)

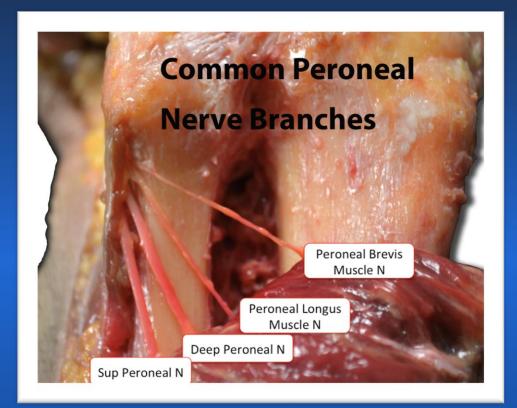
- MVA only 19.2% in same study
 - Moatshe et al. OJSM 2017; Schlumberger et al. KSSTA 2020

Return to Sport:

- Reporting inconsistent
- Overall RTS 53%, competitive athletes 22%
 - Everhart et al. Arthroscopy 2018
- 4) Biceps femoris repair
- 5) Peroneal Nerve Neurolysis

Mechanism of Injury

- High energy trauma (MVA, fall from height) or low energy trauma (sports)
 - 50.3-51% high energy trauma
 - 47-49.3% low energy trauma
 - Engebretsen et al. KSSTA 2009; Moatshe et al. Arthroscopy 2017
- Often knee hyperextension + varus or valgus force
- Typically a contact injury
- Concomitant "trauma" injuries


Injury Grading: Schenk's Classification

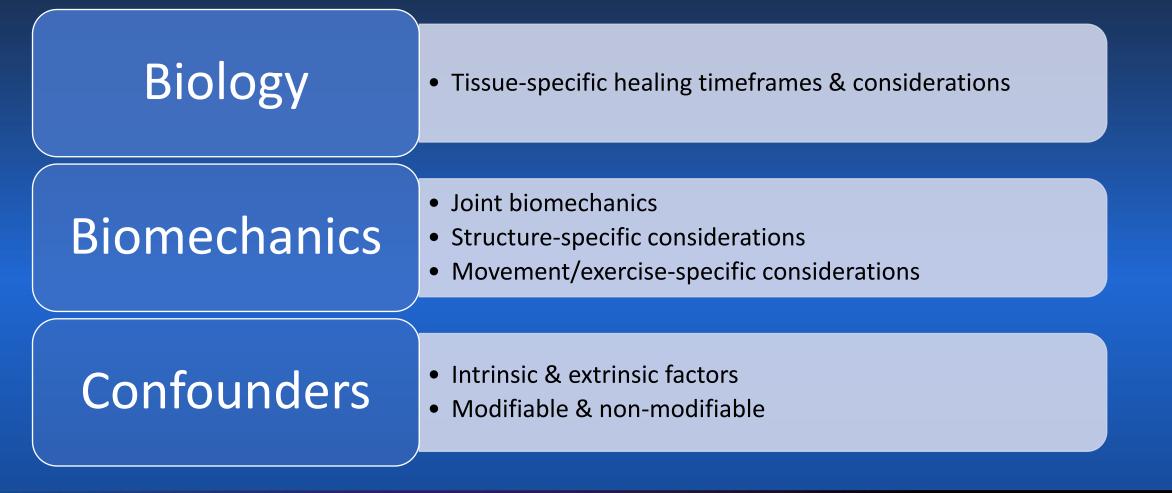
KD IInjury to single cruciate + collateralsKD IIInjury to ACL and PCL with intact collateraKD III MInjury to ACL, PCL, MCLKD III LInjury to ACL, PCL, FCL	Table 1
KD III M Injury to ACL, PCL, MCL	KD I
·····	KD II
KD III I Injuny to ACL PCL ECL	KD III M
Injury to ACL, FCL, FCL	KD III L
KD IV Injury to ACL, PCL, MCL, FCL	KD IV
KD V Dislocation + fracture	KD V

Additional caps of "C" and "N" are utilized for associated injuries. "C" indicates an arterial injury. "N" indicates a neural injury, such as the tibial or, more commonly, the peroneal nerve. ACL, anterior cruciate ligament; FCL, fibular collateral ligament; KD, Knee Dislocation Classification I–V; MCL, media collateral ligament.

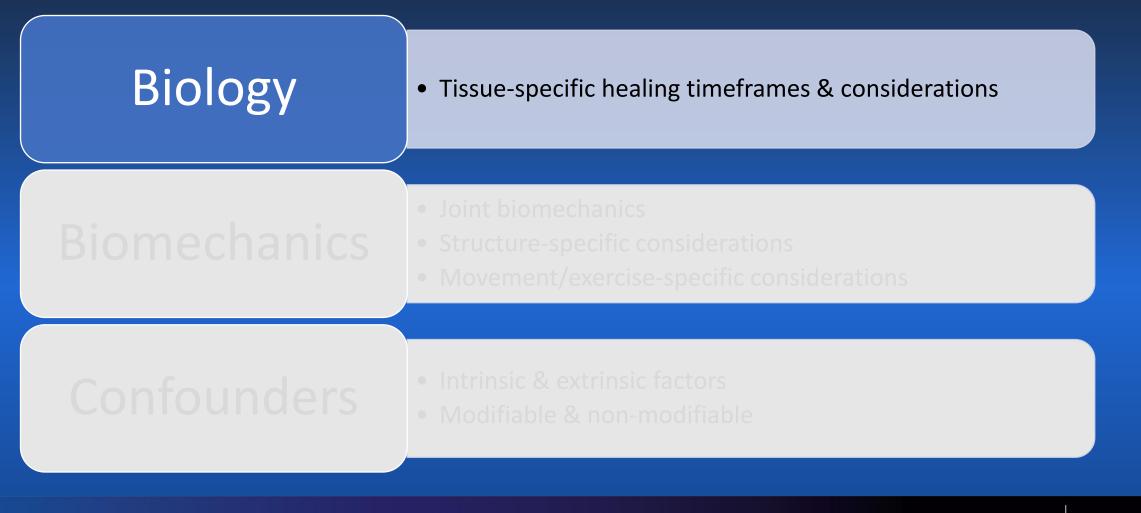
Neurovascular (NV) Injury

- Higher risk when both cruciates are involved
- With knee dislocation (compared to MLKI alone):
 - Common Peroneal Nerve (CPN) Injury: 38% (14% MLKI)
 - Popliteal artery injury: 18% (4% MLKI)
 - Kahan et al JBJS 2021
- PLC injury = 42 times higher odds of CPN injury, 9.2 times higher odds of popliteal a. injury
 - Moatshe G. et al. Arthroscopy 2017

Concomitant Joint Injury


- In presence of MLKI:
 - Meniscal injury: 37.3-55%
 - Cartilage injury: 28.3-48%
 - Moatshe G. et al. Arthroscopy 2017
 - Krych A. et al. KSSTA 2015

SCIENTIFIC FOUNDATION FOR POST-OP PRECAUTIONS



Foundations for Post-Op Precautions

Foundations for Post-Op Precautions

Early Recovery

Multiple, large soft tissue incisions

Concomitant extra-articular work (soft tissue repair):

 Biceps femoris tenson, IT band, lateral capsule, lateral gastrocnemius tendon

Concomitant intra-articular work:

- Meniscus repair
- Fracture fixation

Bone tunnels at multiple ligament reconstruction sites

Autograft and allograft tissueVarious fixation methods

Neurovascular Issues:

- Nerve injury (Common peroneal nerve)
- Vascular injury/bypass (Popliteal artery)

Biology: Overview of Healing

Proliferation (3 days to 14 days)

Hematoma

Inflammatory mediators released

Macrophages clear wound site

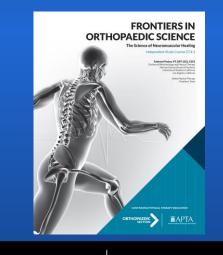
Growth factors & cytokines released

VEGF (vascular endothelial growth factor) stimulates angiogenesis

Scaffold of specific tissue type is built (type III collagen, bone callus, etc.)

Ground substance

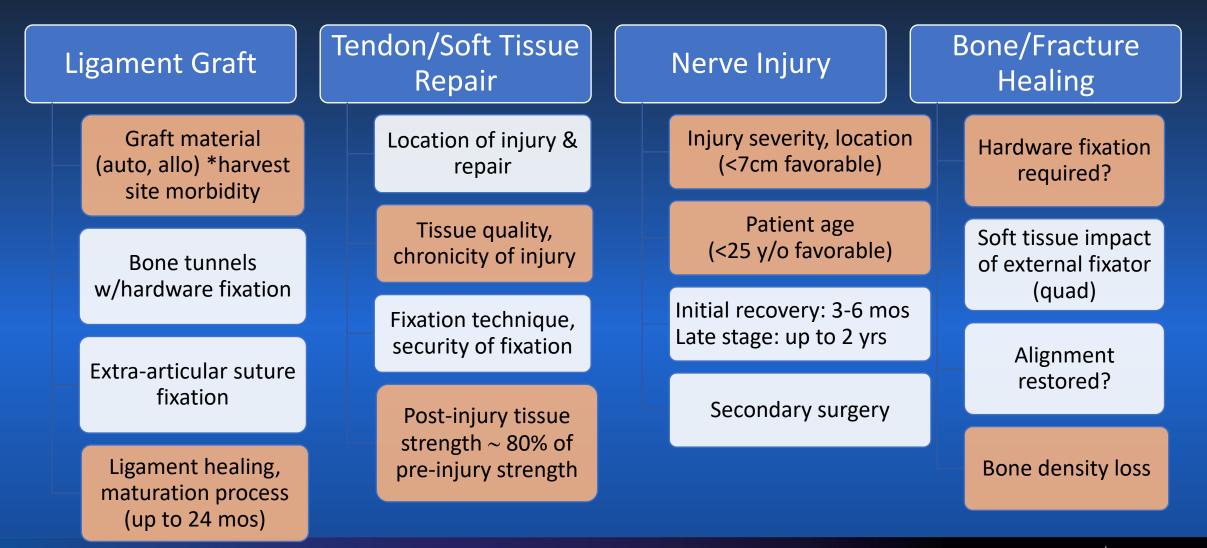
Scarring


Ongoing angiogenesis

Remodeling/Maturation (14+ days)

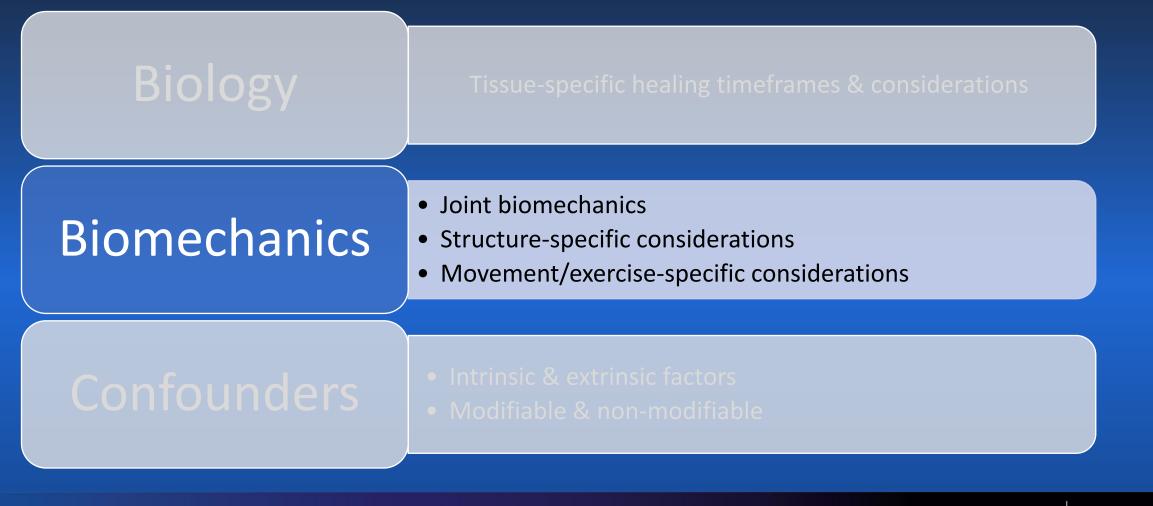
Mature tissue type fills in scaffold (Type 1 collagen. Bone, etc.)

Collagen fibers align, diameter increases, cross-links form

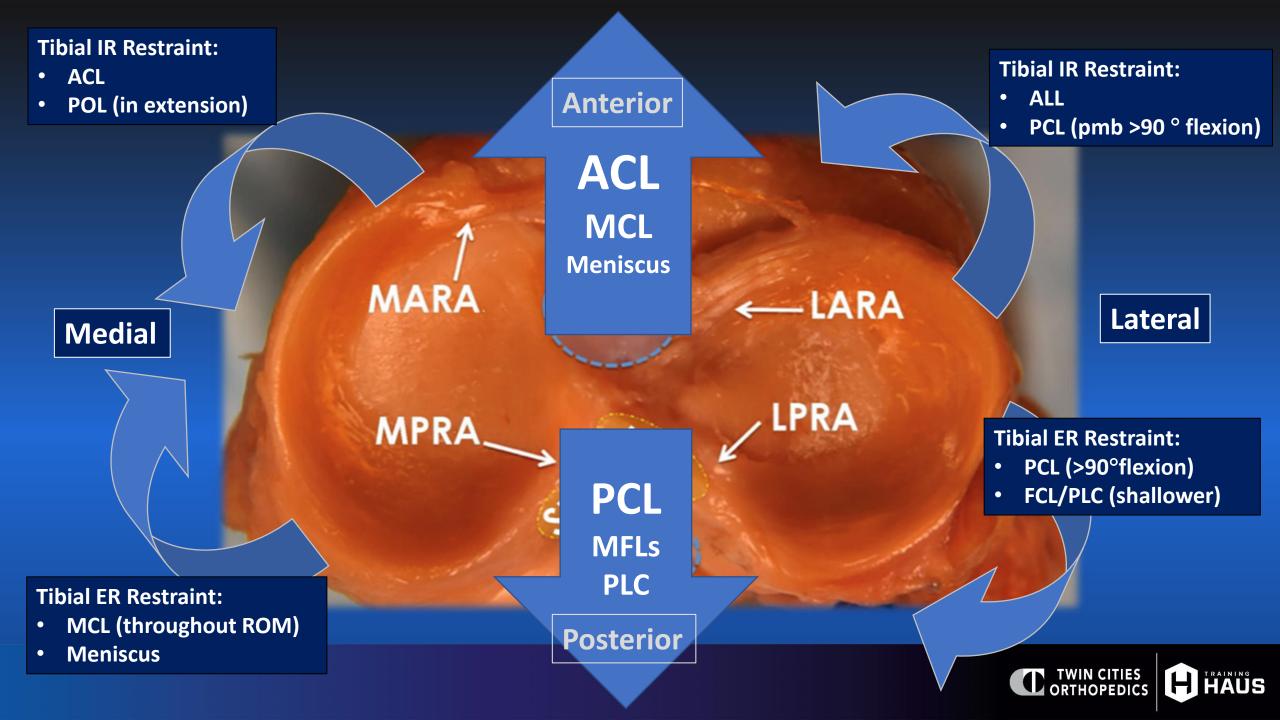

Tissue adapts, strengthens (influenced by mechanical stress)

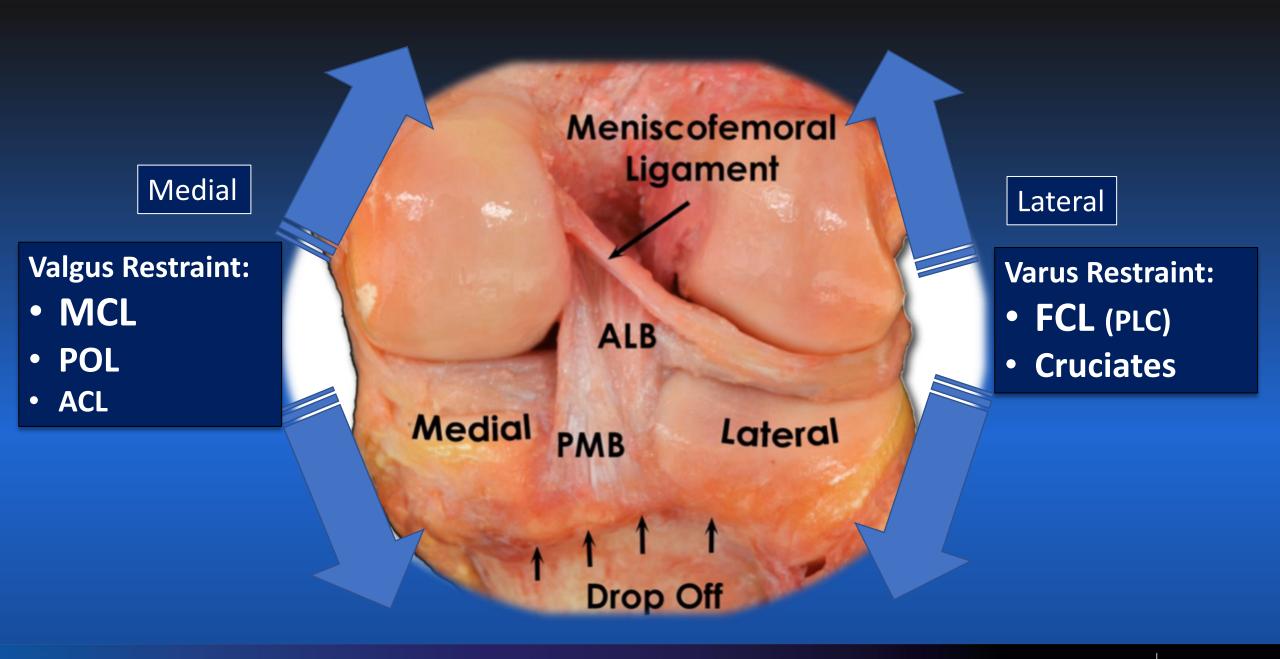
H HAUS

Piraino A. Frontiers in Orthopaedic Science: The Science of Neuromuscular Healing. 2017 Orthopaedic Section, APTA, Inc.)

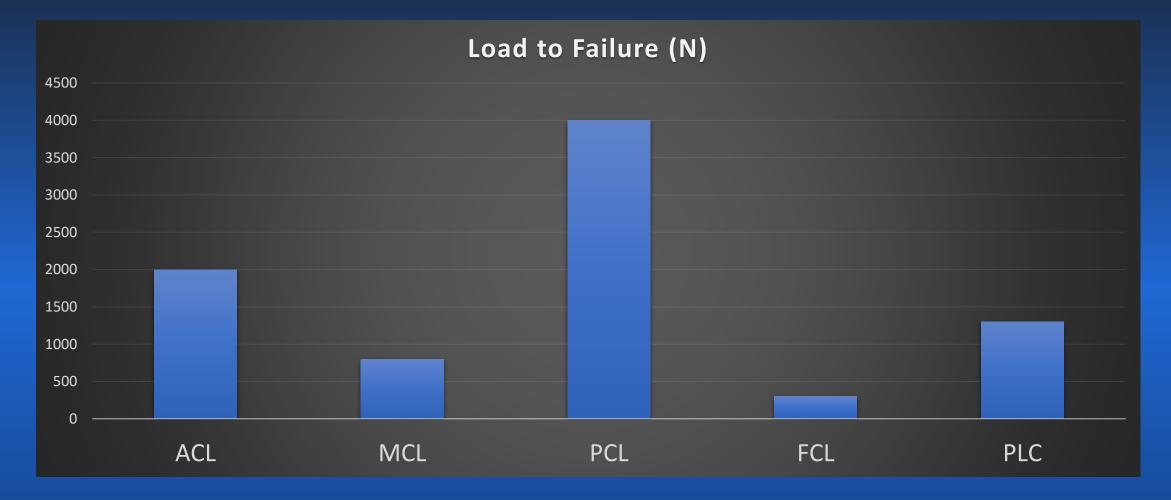

Biology: Structure Specific Considerations

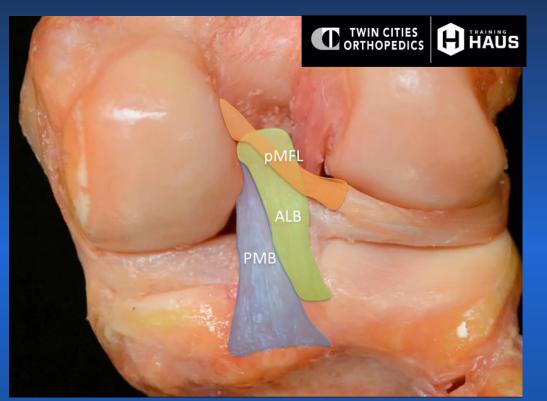
Peskun CJ. CORR 2012; Niall DM. JBJS(Br) 2005; Woo J. Biomechanics 2006; Piraino 2017; Nagelli Sports Med 2017


Foundations for Post-Op Precautions



ANATOMY & BIOMECHANICS





Load to Failure

Posterior Cruciate Ligament (PCL) Anatomy

• 2 distinct PCL bundles:

• Anterolateral bundle (strongest)

- Posteromedial bundle
- Codominant contributions to knee stability (between the bundles)
- Meniscofemoral ligaments
 - Anterior (Ligament of Humphrey)
 - Posterior (Ligament of Wrisberg)

Kennedy NI et al. AJSM. 2013 Dec;41(12):2828-38.

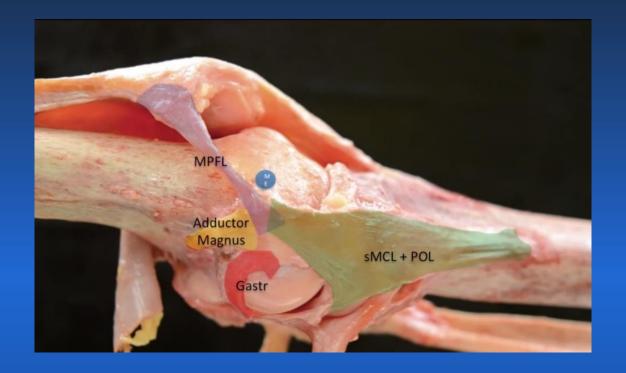
PCL Biomechanics

• <u>AL bundle</u>:

- Lengthens with knee **flexion**
- AL bundle resists PTT through most of flexion (90°)

• <u>PM bundle</u>:

- Lengthens with knee extension
- Resists PTT near full extension & resists hyperextension
- PM bundle can resist PTT again in deep, end range flexion


 Both provide rotational stability throughout the range

• More pronounced near 90°

Hosseini Nasab SH et al. PloS one. 2016

Medial Knee Anatomy

LaPrade MD, Kennedy MI, Wijdicks CA, LaPrade RF. SMAR 2015

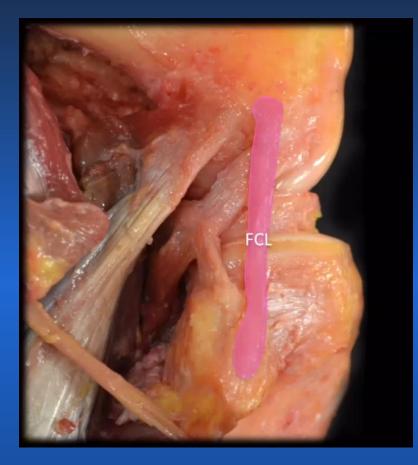
• <u>sMCL</u>: (superficial MCL)

- Long, primary stabilizer
- Proximal & distal tibial attachments
- Highest load to failure & stiffness
- <u>dMCL</u>: (deep MCL aka "mid-third medial capsular ligament")
 - Short, secondary stabilizer
 - Meniscotibial and meniscofemoral attachments
 - Lowest load to failure & stiffness
- **POL**: (Posterior oblique ligament)
 - Consists of 3 fascial expansion off distal semimembranosus tendon

• Merges with posteromedial capsule

Medial Knee Biomechanics

Anterior bundles elongate with flexion
 Posterior bundles elongate with extension


• <u>sMCL</u>:

- Resists valgus (proximal) and tibial rotation (distal) throughout ROM
- <u>dMCL</u>:
 - Secondary restraint to valgus & rotation
- <u>POL</u>:
 - Tensions at posteromedial knee in **extension**
 - Resists $IR \rightarrow valgus \rightarrow ER$

LaPrade MD, Kennedy MI, Wijdicks CA, LaPrade RF. SMAR 2015 Hosseini A, Qi W, Tsai TY, Liu Y, Rubash H, Li G. KSSTA

Lateral Knee Anatomy

Posterolateral Corner (PLC):

- 3 primary structures:
 - Fibulocollateral ligament (FCL or LCL)
 - Popliteus Tendon (PT)
 - Popliteofibular ligament (PFL, aka "arcuate ligament")

Popliteus Tendon is the strongest structure
 PT (700N) → PFL (298 N) → FCL (295N)

LaPrade RF, et al. AJSM 2005 Sep;33(9):1386-91.

Lateral Knee Biomechanics

• <u>PLC:</u>

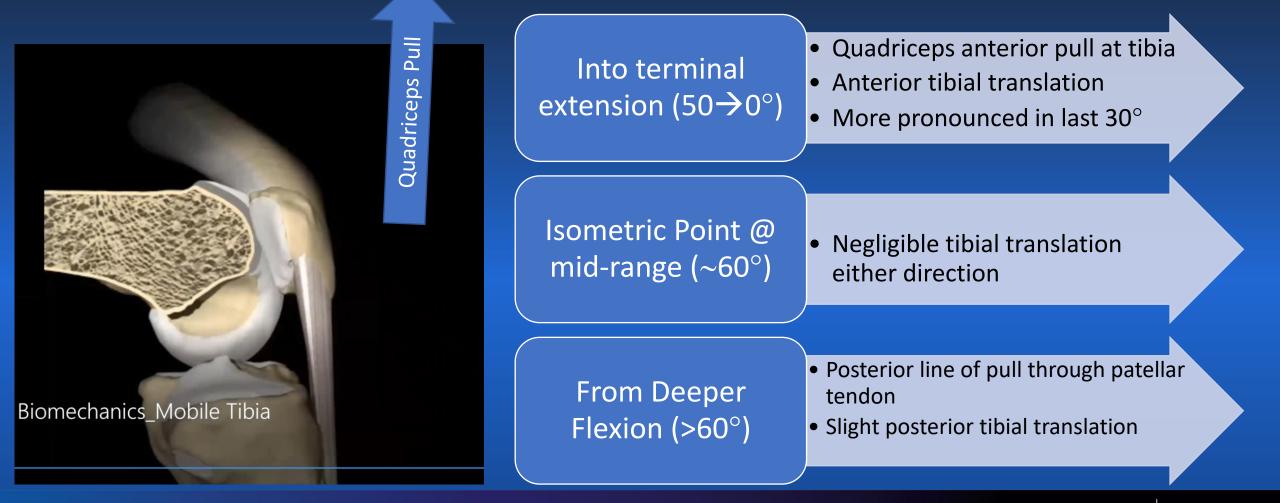
- Resists hyperextension, varus, tibial ER
 - More pronounced near extension
- Resists PTT near full extension

• <u>FCL</u>:

- Resists varus throughout range
- Resists tibial ER near full extension

LaPrade RF et al AJSM 2005 Sep;33(9):1386-91.

ROM Precautions: Knee flexion ROM limit 90°x 2 weeks post-op (Prone PROM for PCLs)


*Some structures will have a hyperextension (HE) precaution (PCL, PLC, FCL, POL)

0-0-90° to honor îligament/graft length/tension with HE or deeper flexion angles

2 weeks = early collagen proliferation has occurred

Biomechanics: OKC Quadriceps

Escamilla JOSPT 2012; Markolf AJSM 2004; Aalbersberg B Biomech 2005; Lutz JBJS-Am 1993; Daniel Clin Sports Med 2000

Biomechanics: O

Precaution: Modified arc of motion with quadriceps strengthening (varies per structures involved)

*Positional restrictions evolve gradually as healing progresses

Biomechanics_Mobile Tibia

Escamilla JOSPT 2012; Markolf AJSM 2004; Aalbersberg B Biomech 2005; Lutz JBJS-Am 1993; Daniel Clin Sports Med 2000 or line of pull through patellar

ps anterior pull at tibia

translation

last 30°

Slight posterior tibial translation

Biomechanics: OKC Hamstrings

From terminal extension $(0 \rightarrow 30^{\circ})$

 Minimal mechanical advantage to induce posterior tibial translation

Into Progressive Flexion (>30°) Increasing mechanical advantage to create progressively more dramatic posterior tibial translation

Escamilla JOSPT 2012; Markolf AJSM 2004; Aalbersberg B Biomech 2005; Lutz JBJS-Am 1993; Daniel Clin Sports Med 2000

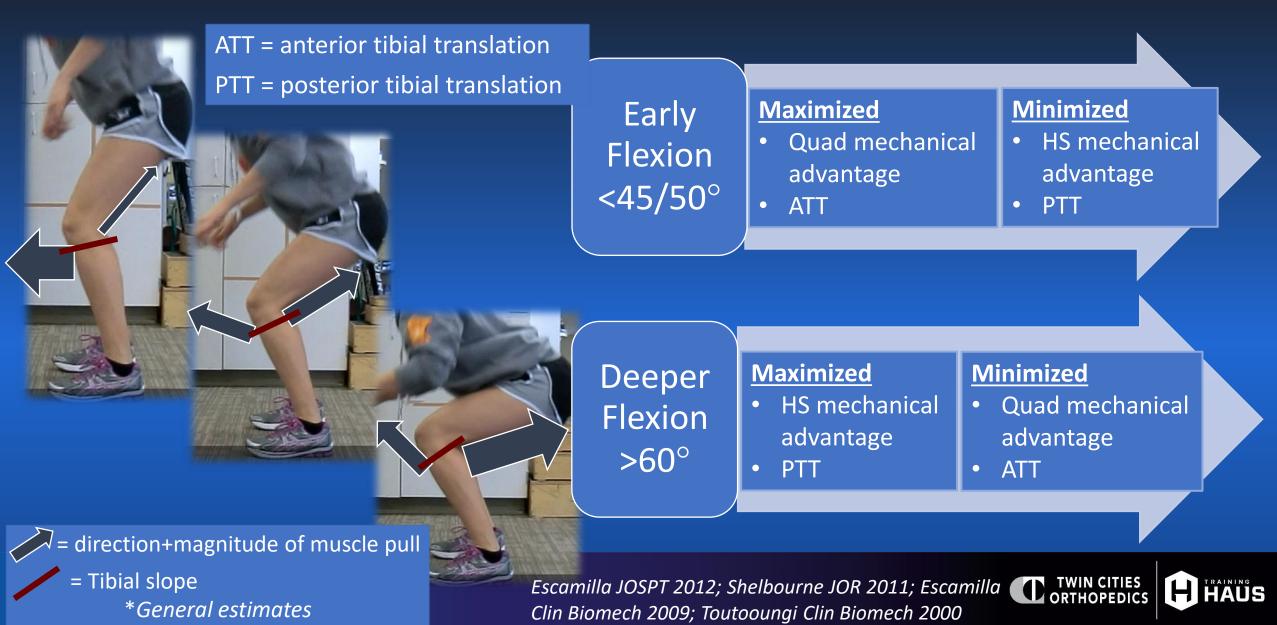
Biomechanics: OV

Precaution: NO resisted hamstring curling into knee flexion x 4 months

>30 degrees = more joint shear, PTT
4 months = more mature graft

من مسور mechanical مرage to create ogressively more dramatic posterior tibial translation

ical


osterior

Hamstring Pull

Escamilla JOSPT 2012; Markolf AJSM 2004; Aalbersberg B Biomech 2000; Lutz JBJS-Am 1993; Daniel Clin Sports Med 2000

Biomechanics: Weight Bearing (CKC) Exercise

Biomechanics: Weigh Bearing (CKC) Exercise

ATT = anterior tibial transf

PTT = posterior tibic

Precaution: No squatting >70°x 4 months post-op

>70 degrees = more joint shear, PTT
4 months = more mature graft

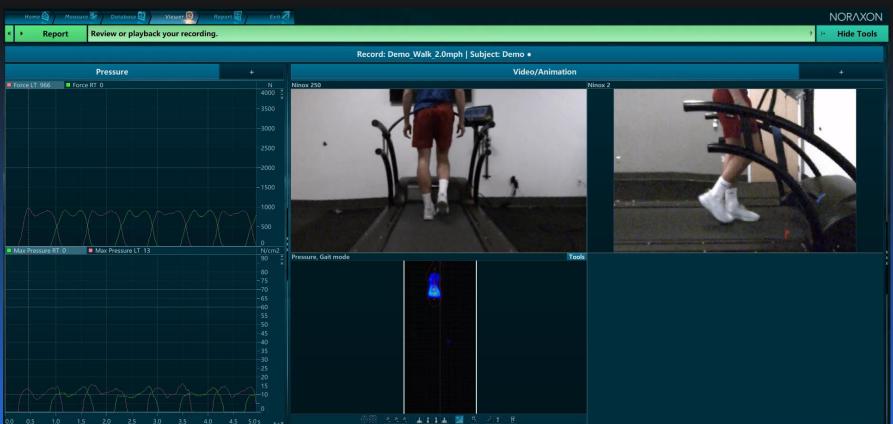
advantage

Minimized

HS mechanical

advantage

ATT


= direction+magnitude of muscle pull

= Tibial slope **General estimates*

Escamm, 2009; Toutooungi Clin Biomech 2000

Biomechanics: Gait

- Best quality, most abundant literature related to ACL
 - Studies re: PCL, other structures lacking, outcomes/observations more variable
- Loading response:
 - Sagittal Plane: Quad activation + excursion into shallow flexion + tibial slope = ATT \rightarrow ACL strain
 - ACL injury \rightarrow Increased demand placed on MCL to control ATT
 - Transverse Plane: MLKI disrupts static structures that normally control rotational movement

Wu AJSM 2010; Andriacchi J. Biomech 2005; Hosseini Nasab PloS one 2016; Shelbourne JOR 2011; Shelburne Med Sci Sport Exer 2005; Paterno NAJSPT 2008

Biomechanics: Gait

• Mid-stance:

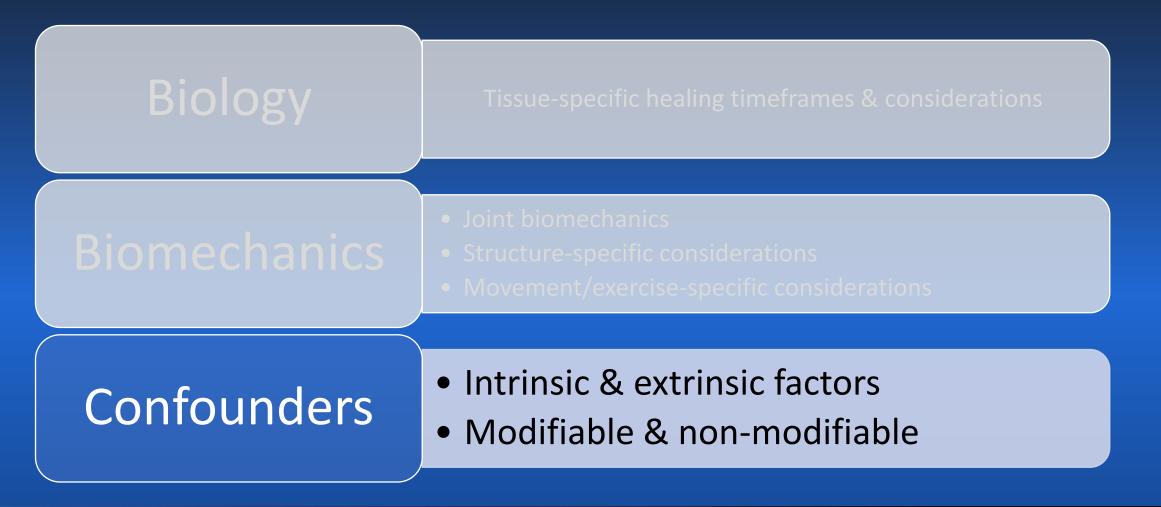
- Adduction moment through knee
- Knee stabilized by lateral, posterolateral structures
 - PLC, biceps femoris, ITB
- Varus thrust gait as a result of injury to these structure
 - † tensile stress at lateral knee structures
 - ↑ compressive forces through medial compartment

Biomechanics: Gait

Precaution:

Post-operative weight bearing restrictions (NWB, PWB, ??)

ent through knee


**Currently under investigation
within our practice**

Very little high-quality literature on non-ACL ligament loading with gait ateral knee

assive forces through medial partment

Foundations for Post-Op Precautions

Confounders: Healing

Non-Modifiable

- Baseline joint health
 - Prior (chronic) injury, alignment, OA
- Implants/foreign materials
- Infection
- Age
 - Older = slower, impaired healing
- Sex hormones
- Systemic disease
- Medication

Modifiable

- Nutrition
 - TCO bone health team??
- Psychological stress
 - TCO sports psych team??
- Smoking
 - Delays tissue healing
 - Increases complications

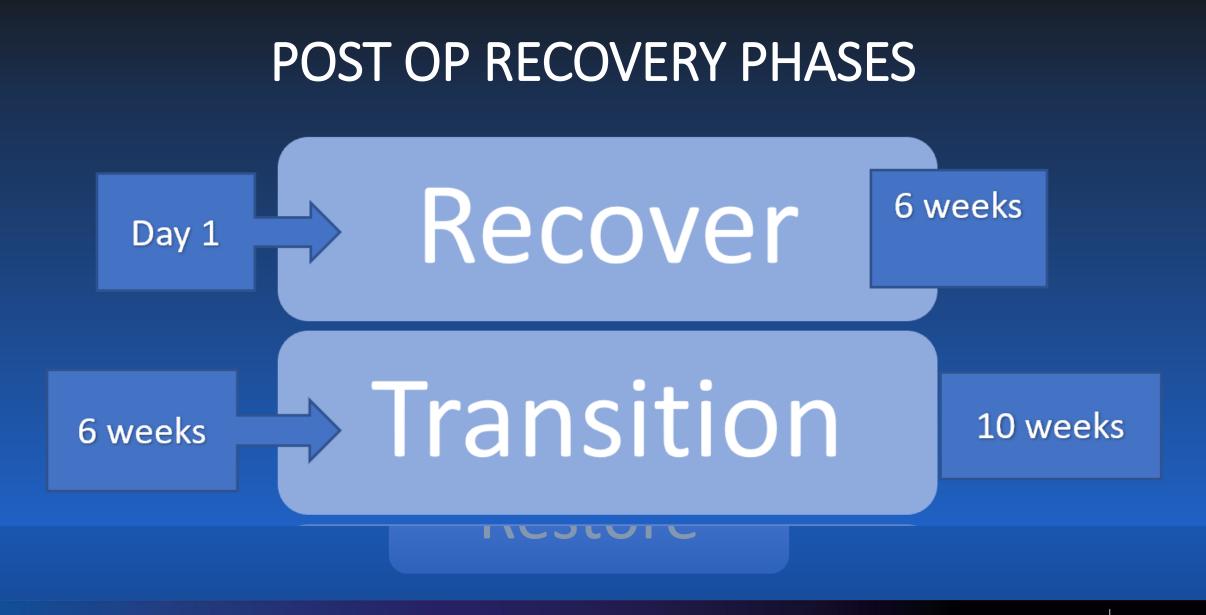
Patient education
Collaborative, team approach

Confounders: Orthopaedic & Beyond

Neurovascular injury	 Vessel: Emergency vascular bypass, compartment release Wound healing (emergency surgery same day/week as knee surgery) Nerve: Foot drop→orthotics need (AFO)→altered gait pattern Additional delayed surgery (after knee recovers)
Additional Trauma	 Fracture, joint dislocation above/below knee Internal injuries, brain injury/concussion, DVT, infection Psychological response to traumatic injury (with or w/o brain injury)
Social, Economic Factors	 Health insurance Financial resources (time off work) Transportation to/from clinic for high # of visits, long duration of care Advocacy, In-home support (especially in early recovery)

EARLY POST-OPERATIVE REHABILITATION: Key Priorities

POST OP RECOVERY PHASES



Effectively re-introduce loading \rightarrow Functional Strengthening

Effectively re-activate target muscles safely \rightarrow Isolated Strengthening

Nourish Joint \rightarrow Restore ROM

Effectively re-introduce loading -> Functional Strengthening

Effectively re-activate target muscles safely \rightarrow Isolated Strengthening

Nourish Joint \rightarrow Restore ROM

Effectively re-introduce loading -> Functional Strengthening

Effectively re-activate target muscles safely \rightarrow Isolated Strengthening

Nourish Joint \rightarrow Restore ROM

Effectively re-introduce loading -> Functional Strengthening

Effectively re-activate target muscles safely \rightarrow Isolated Strengthening

Nourish Joint \rightarrow Restore ROM

Effectively re-introduce loading \rightarrow Functional Strengthening

Effectively re-activate target muscles safely \rightarrow Isolated Strengthening

Nourish Joint \rightarrow Restore ROM

Education: Day 1 Post-Op Clinic

Patient Education Folder:

- ✓ PT referral
- ✓ Protocol
- ✓ TRAC testing scheduling document (4, 7, 10 mo.)
- Post-op priorities
 education document
- ✓ Contact information
- ✓ Medical education document (wound care, medication, etc.)
 ✓ Intra-operative photos

Observing for Post-Operative Complications

Nerve Injury

DVT

Vascular Injury/Compartment Syndrome

Infection

Fracture

Complications: DVT

- DVT
 - Painful, progressive lower leg swelling (ankle, foot, toes swollen)
 - Painful to palpation of the calf
 - Can be general tenderness or tenderness to the deep veins
 - Usually along saphenous vein (central calf)
 - Pain with passive ankle DF
 - DVT risk factors best defined using Wells' Criteria for DVT

Well's Criteria

Active cancer Treatment or palliation within 6 months	No 0	Yes +1
Bedridden recently >3 days or major surgery within 12 weeks	No 0	Yes +1
Calf swelling >3 cm compared to the other leg Measured 10 cm below tibial tuberosity	No 0	Yes +1
Collateral (nonvaricose) superficial veins present	No 0	Yes +1
Entire leg swollen	No 0	Yes +1
Localized tenderness along the deep venous system	No 0	Yes +1
Pitting edema, confined to symptomatic leg	No 0	Yes +1
Paralysis, paresis, or recent plaster immobilization of the lower extremity	No 0	Yes +1
Previously documented DVT	No 0	Yes +1
Alternative diagnosis to DVT as likely or more likely	No 0	Yes -2

- A score of 1-2 is considered moderate risk with a pretest probability of 17%.
- A score of 3 or higher suggests DVT is likely. Pretest probability 17-53%.

Complications: Nerve Injury

Nerve injury

- Sensory-motor deficits expected for the first 1-2 days post-op if patient received a nerve block during surgery
- Progressive deterioration (rather than gradual recovery) of:
 - Specifically pathway of superficial and deep peroneal nerves
 - Superficial peroneal nerve
 - Motor (myotomes)
 - o lateral compartment of leg
 - o peroneus longus
 - \circ peroneus brevis
 - Sensory (dermatomes)
 - majority of skin on the dorsum of foot, excluding webspace between hallux and second digit
 - anterolateral distal 1/3 of leg
 - No associated reflex
 - Deep peroneal nerve
 - Motor (myotomes)
 - o tibialis anterior
 - o extensor digitorum longus/brevis
 - o peroneus tertius
 - o extensor hallucis longus/brevis
 - Sensory (dermatomes)
 - articular branch to the ankle joint
 - 1st dorsal webspace
 - No associated reflex

Complications: Vascular Injury

Vascular injury → Compartment syndrome

- Disproportionately high pain that does not respond to analgesics
- Severe pain with stretch of the involved compartment
- Parasthesia or numbness
- Loss/reduction of lower extremity pulse (dorsalis pedis/posterior tibial pulses)
 - Reduced capillary refill at toes/foot
 - Dusky appearance of toes/foot
 - Foot is cold
- Progressive lower leg swelling (into foot, toes as well)
- Firmness/tightness at lower leg compartments
- Compartment syndrome risk factors include: lower leg trauma, vascular compromise, excessively tight/compressive dressing
- 5 Ps (pain, palor, pulselessness, paresthesia, paralysis)

Complications: Infection, Fracture

Infection

- Foul smelling, purulent/pus-like discharge
 - Blood and serosanguinous fluid are normal for the first few days after surgery.
- Progressive redness, warmth (expanding/intensifying rather than retracting/diminishing)
- Tenderness around affected area
- Fever >101.5 degrees

Fracture

- Pain increased from baseline with weight bearing or muscle activation
- Focal pain and swelling over the involved region of bone
- Associated trauma/MOI after surgery

Management for Dr. LaPrade's Patients

STEPS TO TAKE WHEN RED FLAGS OBSERVED

1. Contact the medical team for consult:

- a. PT team member to contact MD team:
 - i. teamlaprade@tcomn.com attention Chris Armstrong, PA
- b. Patients may call 952-456-7412 if needed

2. Pursue urgent medical visit referral and/or imaging consult as recommended

- a. TCO urgent care
 - i. Locations: <u>https://tcomn.com/ortho-urgent-care/?gclid=EAIaIQobChMIo--</u> Wsti78QIVUGpvBB0i2gdHEAAYASAAEgLDLfD_BwE
- b. Duplex ultrasound for DVT screening
 - i. CDI (US available in Eagan on select days)
 - 1. Eagan office should be able to coordinate a visit at another location if US not available on-site
 - ii. Vascular & Interventional Experts (VIE)
 - 1. Located on-site at TCO locations
 - a. Minnesota Drive, Edina (available Mon-Fri)
 - b. Plymouth (available Fri)
 - c. Woodbury (available Tues)

3. Send to ED

- a. Edina: Fairview/M Health Southdale
- b. Eagan: Fairview/M Health Ridges (Burnsville)
- c. Link to all Fairview/M Health ED Locations: <u>https://www.fairview.org/specialties/emergency-services-and-critical-</u> <u>care#locations1</u>

Joint Protection: WB Restriction

**RESEARCH PROTOCOLS IN PROGRESS **

Ligament(s) Involved	Control Precaution	Experimental Precaution		
Multi-Ligament	NWB	PWB (40% of BW)		
PCL	NWB	PWB (40% of BW)		
PLC	NWB	PWB (40% of BW)		
FCL	PWB (40% of BW)	WBAT		
6-week weight bearing restriction period for all				

*Exclusion: unstable meniscus repair, revision surgery, fracture

Joint Protection: Bracing

• MLKR patients remain in a brace longer:

- ADLs: until 6 month stress x-rays show stable knee
- Higher level activities: throughout the 1st year

• PCLR:

- Immobilizer until swelling reduces enough to transition into dynamic PCL brace (usually 2-3 weeks)
- Non-PCLR:
 - Immobilizer until WB (6 weeks) transition to hinged brace
- AFO indicated for common peroneal n. injury

Symptom Management: Swelling

Swelling Management: All of the time

Vasopneumatic Cryotherapy: -30 min on/off in first week -Multiple times daily in first 2-3 weeks

Compression Stockings: <u>NWB</u>: 6 weeks at surgical limb, 2 weeks at non-surgical <u>WBAT</u>: 2 weeks at surgical limb only

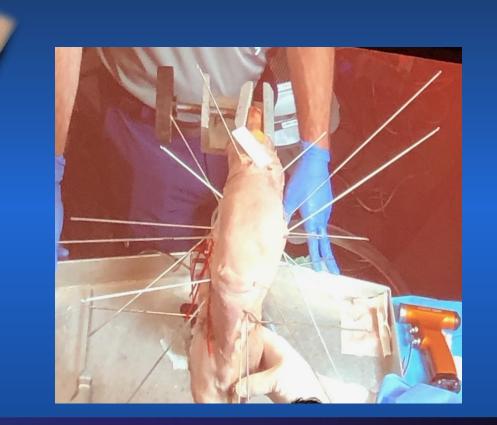
Tubigrip Stockings

Swelling Management: Some of the time

Kinesiology Tape for Lymphatic Flow

Foam Croutons "Burritos": Construct packet(s) of small foam croutons to apply under tubigrip over an area of stagnant fluid accumulation (enclose within cover-roll tape or small size tubigrip (ends taped/stitched shut) to make a little "burrito" of croutons)

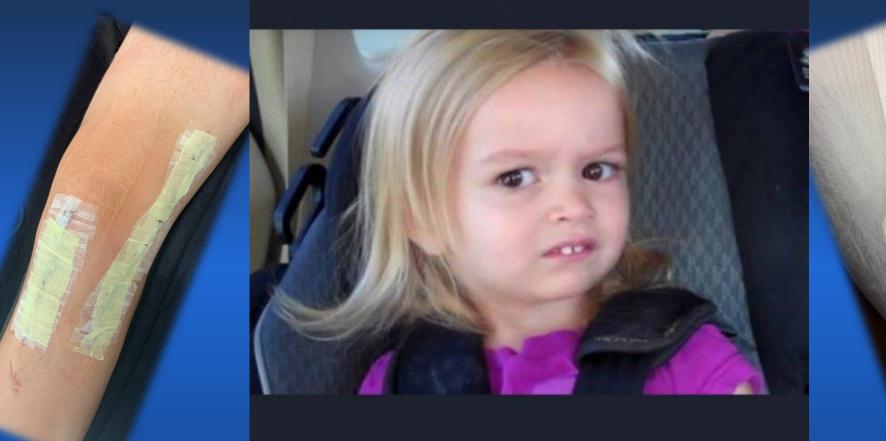
*creates channels in the fluid to help drain it


Effectively re-introduce loading -> Functional Strengthening

Effectively re-activate target muscles safely \rightarrow Isolated Strengthening

Nourish Joint \rightarrow Restore ROM

Nourish the Joint \rightarrow ROM


Nourish the Joint \rightarrow ROM

Nourish the

makeameme.org

Nourish the Joint \rightarrow ROM

Single-Stage Multiple-Ligament Knee Reconstructions for Sports-Related Injuries

Outcomes in 194 Patients

Robert F. LaPrade,^{*†} MD, PhD, Jorge Chahla,[‡] MD, PhD, Nicholas N. DePhillipo,^{†§} MS, ATC, OTC, Tyler Cram,[†] ATC, Mitchell I. Kennedy,^{||} BS, Mark Cinque,^{||} MD, Grant J. Dornan,^{||} MSc, Luke T. O'Brien,[¶] PT, MPhty (Sports), Lars Engebretsen,^{§#**} Prof., MD, PhD, and Gilbert Moatshe,^{§**} MD, PhD *Investigation performed at The Steadman Clinic, Vail, Colorado, USA*

- Immediate ROM permitted (0-90 deg limit x 2 wks, then progress as tolerated)
- Mean post-operative Knee ROM (2 yr f/u): 0-0-134 deg
- Post-operative multi-direction <u>knee laxity within acceptable range</u> (stress radiography)

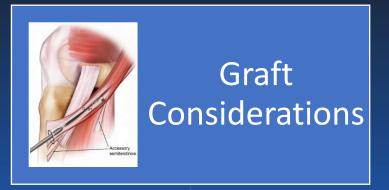
Single-Stage Multiple-Liga Reconstructions for S

Knee Injuries

Outcomes in 194 P

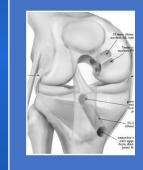
Robert F. LaPrad Nicholas N Mark Lars Enge. Investigation pe. **Early ROM** following MLKI Knee Reconstruction is

- Immediate ROM permittee
- Mean post-operative Knee ROM (2 yr 1)
- Post-operative multi-direction knee laxity within acceptable range (stress radiography)


as tolerated)

ROM: Precautions & Unique Considerations

No Hyperextension (HE)	 Avoid graft tension on structures that natively limit knee HE PCL & PLC: Avoid HE x 8 weeks FCL & POL: Avoid HE x 2 weeks then gradual return to symmetry
Prone &/or PROM Knee Flexion ROM	 PCL: PRONE x 2 weeks (avoid positional sag into PTT), PASSIVE x 6 weeks (avoid hamstring pulling into PTT) FCL, PLC: PASSIVE → AAROM gradually over 6 weeks (fibular head disruption, secondary contributors to PTT stability)
Patellofemoral Compartment Adhesion Management	 Inflammation x 48-72 hrs→ proliferation (collagen spray) x 2 wks Extensor mechanism = pulley system (patella/tendons = rope) Scar under the tendons, between the tissue layers = supergluing the rope to the pulley = ineffective pulley!



FCL/PLC

Hypertrophic Changes

MCL

PCL

Double Bundle Allograft

Ossification

Autograft Harvest:

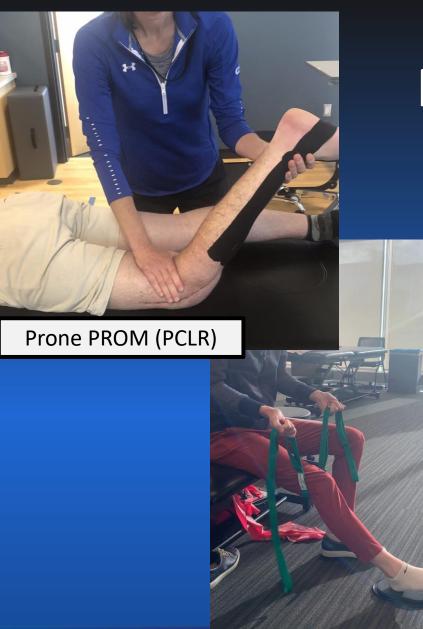
- Additional soft tissue trauma about the joint
 - Tendon healing required from stripping
- Additional regions of collagen proliferation
 - Increased likelihood of scarring

EXCESS SCAR = STIFF JOINT

MANAGE THESE REGIONS TO MINIMIZE EXCESS SCAR

(Manage inflammation, supported ROM, manual interventions, gentle & effective early muscle activation)

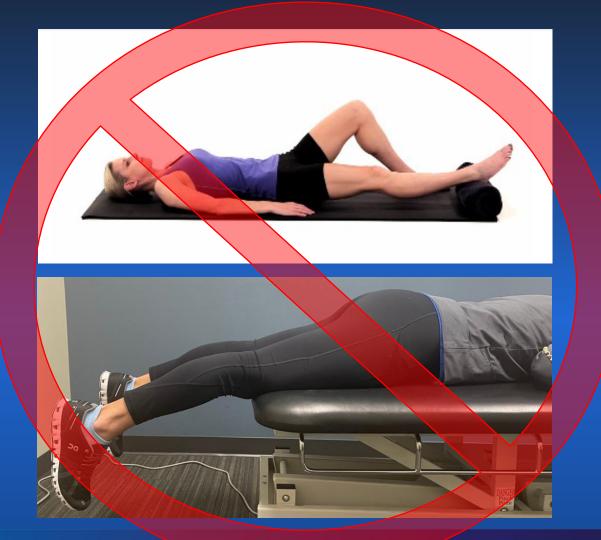
andle Allograft

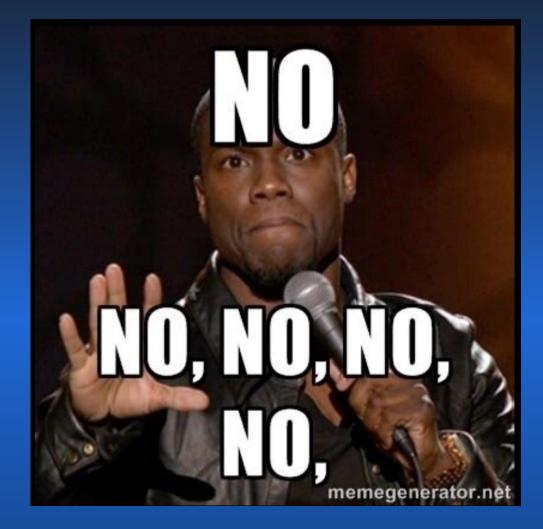

Hypertrop.

ROM Support Strategies

- Patellar/Peripatellar Mobilizations
 - Patella
 - Quad & Patellar Tendons
 - Suprapatellar pouch
 - Infrapatellar fat pad
- Strong, repetitive quad activation
 - Couple with patellar mobilizations
 - Proximal with contraction
 - Distal with relaxation

Seated PROM (PLCR, FCLR, BF repair)


ROM: Flexion Precautions


- Prone PROM 0-90°x 2 weeks (PCL)
 - Avoid posterior tibial sag/translation (PTT) d/t positioning
 - PROM to minimize HS pulling induced posterior shear
- PASSIVE ROM (PROM) x 6 weeks
 - PCL, PLC, biceps femoris repair
 - Minimize dynamic PTT via hamstring pulling

• No hyperextension (PCL, PLC) x 8 weeks

ROM: Hyperextension Precaution

ROM: Hyperextension Precaution

Early Post-Surgical Rehab Pyramid

Effectively re-activate target muscles safely \rightarrow Isolated Strengthening

Muscle Re-action: Nerve Injury

FCL/PLC Procedures Common Peroneal Nerve (CPN)

- Transient CPN Neuropraxia
 - Not unusual when nerve block used
 - Should resolve within 2-3 days
 - If NOT contact medical team
- Complete CPN Injury/Palsy
 - Critical to retain ankle DF ROM
 - Improves future outcomes with tibialis posterior tendon transfer

Muscle Re-activation: Nerve Injury

Contents lists available at ScienceDirect

Experimental Neurology

journal homepage: www.elsevier.com/locate/yexnr

Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients

Tessa Gordon, Nasim Amirjani, David C. Edwards, K. Ming Chan st

HHS Public Access

Author manuscript *Eur J Neurosci*. Author manuscript; available in PMC 2017 February 01.

Published in final edited form as: Eur J Neurosci. 2016 February ; 43(3): 336–350. doi:10.1111/ejn.13005.

Strategies to promote peripheral nerve regeneration: electrical stimulation and/or exercise

Tessa Gordon^{*} and **Arthur W. English**[≈] ^{*}Department of Surgery, The Hospital for Sick Children, Toronto, Ontario M4G 1X8

 $^{\circ}\textsc{Department}$ of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322

Basic Research Article

Electrical Stimulation to Promote Peripheral Nerve Regeneration

Michael P. Willand, PhD¹, May-Anh Nguyen², Gregory H. Borschel, MD¹, and Tessa Gordon, PhD¹

Gordon Exp Neurol 2010, Elzinga Exp Neurol. 2015; Willand 2016; Gordon 2016

Neurorehabilitation and Neural Repair 2016, Vol. 30(5) 490–496 © The Author(s) 2015 Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/1545968315604399 nnr.sagepub.com

Muscle Re-activation: Nerve Injury

Neuromuscular Electrical Stimulation (Quad)

- Stimulation Frequency: 50-100 Hz
- Dosing: 10-15 minutes (intermittent), 3-7x/wk, until strength recovers
- Target: Directly to muscle

Low Frequency Electrical Stimulation (Nerve Injury)

- Stimulation Frequency: ≤20 Hz
- Dosing: 1 hour daily (constant) x 2 weeks
- Target: Along pathway of nerve (proximal to injury location)

Quad Re-activation: Electrical Stimulation (NMES)

• Over-ride quadriceps activation deficit

• Hart JATA 2010

Recover Strength

- Kim JOSPT 2010
- Gatewood Knee Surgery, Sports Traumatology, Arthroscopy 2017

Quad: Blood Flow Restriction Therapy (BFR)

• Tennent Clin J Sports Med 2017

- BFR group had increase in:
 - thigh girth
 - extension and flexion strength
- Excellent tool for patients who are NWB x 6 weeks
 - Safe to initiate within the first 2 weeks after surgery
 - Hughes BJSM 2017, Patterson Front. Physiol .2019, Minniti AJSM 2019
- Introduction of BFR:
 - Bleeding resolved
 - Initiate at lower intensity then build to therapeutic dosing (80%) as tolerated
 - Modify time under occlusion per tolerance

Quad: Blood Flow Restriction Therapy (BFR)

TABLE 1 | Model of exercise prescription with BFR-RE.

	Guidelines	
Frequency	2–3 times a week (>3 weeks) or 1–2 times per day (1–3 weeks)	
Load	20–40% 1RM	
Restriction time	5–10 min per exercise (reperfusion between exercises)	
Туре	Small and large muscle groups (arms and legs/uni or bilateral)	
Sets	2–4	
Cuff	5 (small), 10 or 12 (medium), 17 or 18 cm (large)	
Repetitions Pressure	(75 reps) – 30 \times 15 \times 15 \times 15, or sets to failure 40–80% AOP	
Rest between sets	30–60 s	
Restriction form	Continuous or intermittent	
Execution speed	1–2 s (concentric and eccentric)	
Execution	Until concentric failure or when planned rep scheme is completed	

Patterson Front. Physiol .2019

Quad: Blood Flow Restriction Therapy (BFR)

TABLE 1 | Model of exercise prescription with BFR-RE.

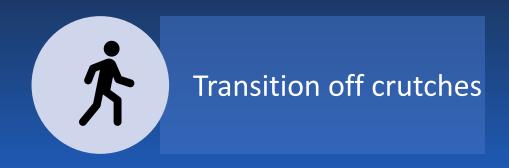
	Guidelines	
Frequency	2–3 times a week (>3 weeks) or 1–2 times per day (1–3 weeks)	
Editorial	> Arthroscopy. 2021 Sep;37(9):2870-2872. doi: 10.1016/j.arthro.2021.0	04.073

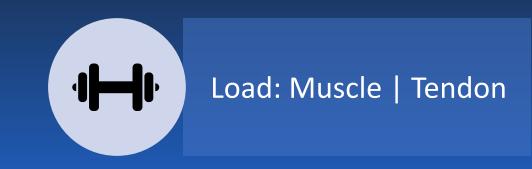
Editorial Commentary: Blood Flow Restriction Therapy Continues to Prove Effective

Robert F LaPrade¹, Jill K Monson², Jon Schoenecker²

Repetitions Pressure	(75 reps) – 30 \times 15 \times 15 \times 15, or sets to failure 40–80% AOP	
Rest between sets	30–60 s	
Restriction form	Continuous or intermittent	
Execution speed	1–2 s (concentric and eccentric)	
Execution	Until concentric failure or when planned rep scheme is completed	

Patterson Front. Physiol .2019




Early Post-Surgical Rehab Pyramid

Effectively re-introduce loading \rightarrow Functional Strengthening

GOALS for Transition

Continue to avoid:

- OKC hamstring
- Squat >70 degrees

Work Capacity

Clean Up Time

Pain/Effusion

Range of Motion

Quad Function

Gait

Gait s/p MLKR

Knee Surg Sports Traumatol Arthrosc (2017) 25:1489–1499 DOI 10.1007/s00167-016-4104-3

KNEE

Gait adaptations following multiple-ligament knee reconstruction occur with altered knee kinematics during level walking

Corey J. Scholes¹ · Joe T. Lynch¹ · Milad Ebrahimi¹ · Brett A. Fritsch¹ · David A. Parker¹

• Initial Contact: significantly greater knee flexion observed at surgical limb

 Loading response: significantly reduced knee flexion (excursion) at surgical limb "More constrained pattern of knee motion"

Gait Retraining

Isolated Open Chain Strengthening: Extension

Isotonic through arc 0-60 $^{\circ}$


Isolated Open Chain Strengthening: Flexion

8-16 weeks

Shallow ISOs

- Hip hinge
- Bridge
- AROM slides

HAUS HAUS JS HAUS HAUS JS HAUS JS HAUS JS HAUS JS HAUS JS HAUS JS HAUS

Progressive quad demand

HAUS

HAUS

HAUS

HAUS

H

H HI

HAUS

HAUS

HHAUS

Considerations:

Pain, effusion, ROM, OKC vs. CKC, precautions, ensuring effective dose-response

NWB activation

WB isometrics

Progressive depth

Heavy, slow eccentrics

Velocity-based eccentrics

Restore Full Motion

Extension

Don't forget to address neural tension to restore full end range extension!

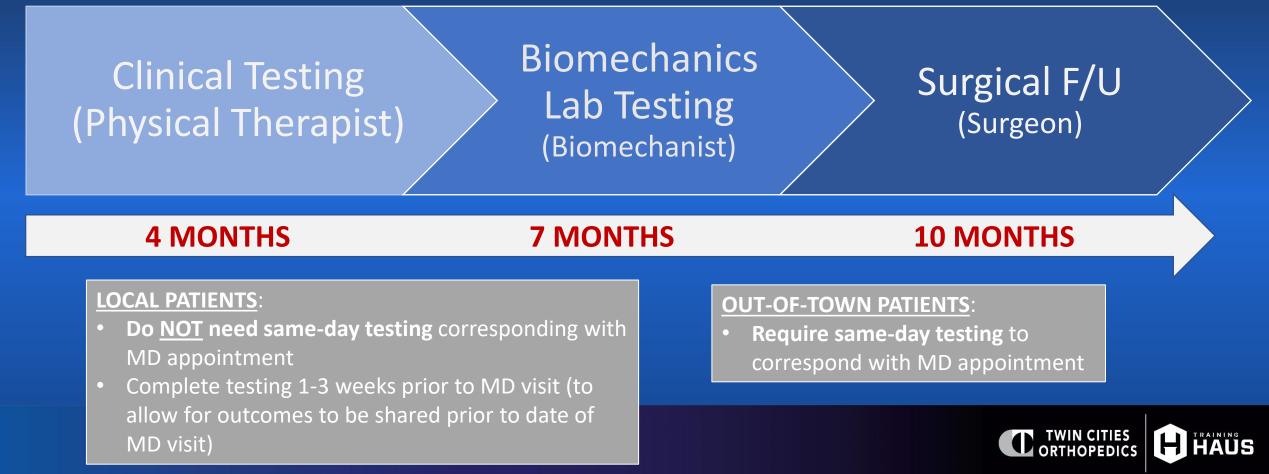
Flexion

Mobilization strategies to reduce posterior pinching with end range flexion progressions

Clean Up Time

Pain/Effusion

Range of Motion


Quad Function

Gait

Dr. LaPrade TRAC Testing Protocol: MLKR Patients

• Testing timelines are listed at the TOP OF EVAL NOTE and IN THE PROTOCOL

• Have patient call to schedule WELL IN ADVANCE

• Do MD appon

 Complete testing allow for outcomes to MD visit)

• WHEN IN DOUBT...EMAIL JILL! jillmonson@tcomn.com

4 Month <u>Clinical Testing</u> Protocol: Baseline

Effusion

Girth: calf, knee, thigh

Limb Length

ROM: ankle, knee

Strength (HHD): hip abduction

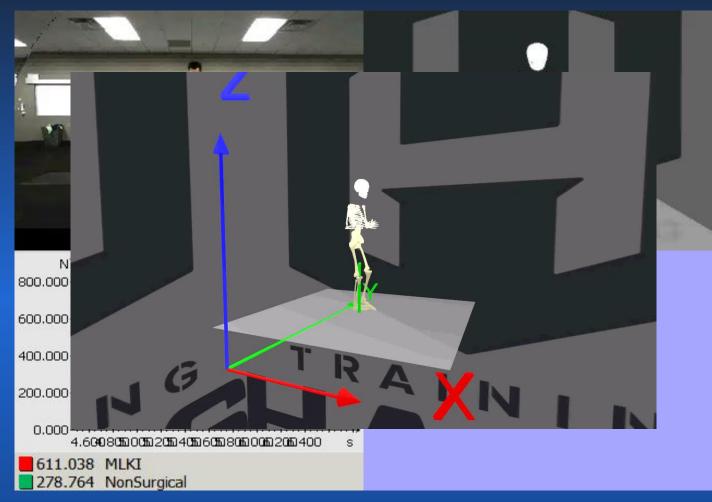
One Leg Rise Test (Culvinor, 2016; Ericcson, 2013)

Y Balance Anterior Reach (Smith, 2014; Stiffler, 2017)

4 month Training HAUS Lab Protocol: 45 min

1. Strength

 Maximal Isometric Quadriceps Test @ 90° of flexion
 LSI and Relative strength to BW



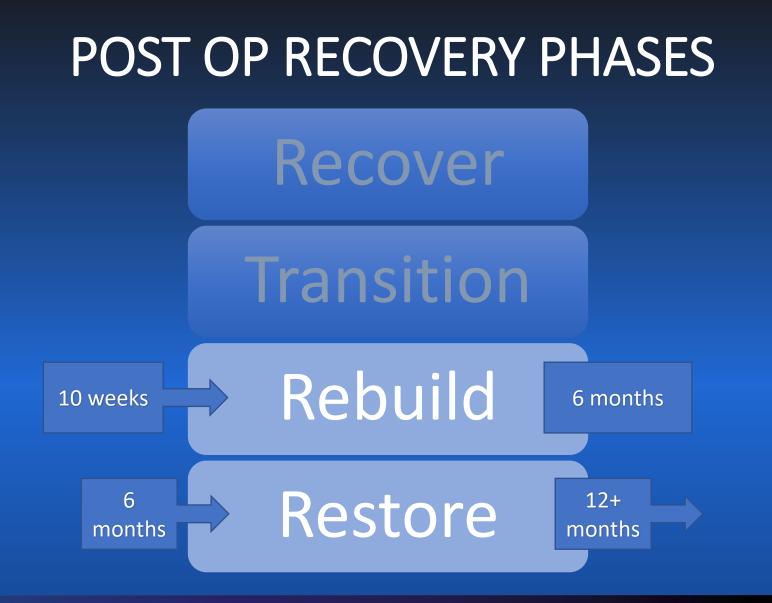
4 month Training HAUS Lab Protocol: 45 min

2. Coordination

- Double Leg Squat
 - Force Distribution between Limbs
- Single leg squat
 - Sagittal/Frontal Strategy

Clean Up Time

Pain/Effusion


Range of Motion

Quad Function

Gait

Anterior Loading Progressions

Emphasize:

- 85% on Front Limb
- Parallel Shin/Spine
- Neutral Hip

"Distalize" Load & Add Time Under Tension

Anterior Loading Progressions

Emphasize:

- 85% on Front Limb
- Parallel Shin/Spine
- Neutral Hip

ISOLATED QUAD exercise on the menu for a VERY LONG TIME

IDENTIFY and CORRECT QUAD AVOIDANCE in CKC

"Distalize" Load & Add Time Under Tension

Overload Progressions

Considerations for Loading:

Pain, effusion, ROM, OKC vs. CKC, precautions, ensuring effective dose-response

"Kick Stand Squat"

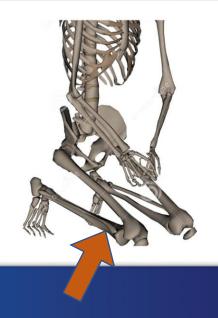
- 85% of weight on Front Limb
- Parallel Shin/Spine
- Knee Over Toe
- Neutral Hip in Transverse/Frontal Plane
- Pressure through Big Toe, Ball of the Foot & Heel
- Goal is to prevent Hip Dominant squat strategy we often see in MLKR

NWB activation

WB isometrics

Progressive depth

Volume & Heavy, slow eccentrics


> Velocity-based eccentrics

Caution with Nordics/Kneeling

Wait until normal stress xrays with MD at 6-month follow-up appointment

Goals: Beyond Limb Symmetry Index (LSI)

Compare to pre-surgical limb status

EPIC (Estimated Pre-Injury Capacity) (Wellsandt, 2017)

Compare to body size / dimensions

• "Allometric Scaling": weight, height, limb length

Compare to healthy normals

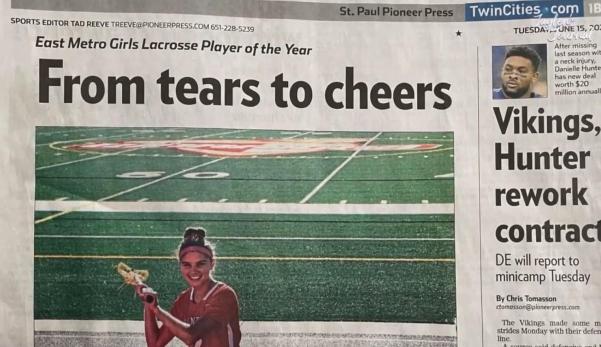
• Appropriate matching: Age, Sex, Sport, Level of sport/experience

BRIEF REPORT

Limb Symmetry Indexes Can Overestimate Knee Function After

ELIZABETH WELLSANDT, DPT, PhD12 • MATHEW J, FAILLA, PT, PhD13 • LYNN SNYDER-MA

Are Muscle Strength and Function of the Uninjured Lower Limb Weakened After ACL Injury?: Two-Year Follow-up After Reconstruction Kyu Sung Chung, MD et al. AJSM 2015


In Conclusion

Understand Precautions	 Knee joint biomechanics Biology Confounders
Master the early • phases of rehab	Promote recovery while protecting multiple structuresAsk for help when needed
Clean up your messes!	 <u>Perfect</u> the early recovery goals before progressing to the "fun stuff"
Set goals & track outcomes	 Measure your patient's progress Adjust and progress your plan of care to promote continual positive changes

Thank you!

TUESDA ... UNE 15, 202 After missing last season wi a neck injury, Danielle Hunte has new deal worth \$20 million annual Vikings, Hunter rework contract

DE will report to minicamp Tuesday

ctomasson@pioneerpress.com

The Vikings made some ma strides Monday with their defense

